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Abstract

At the Cornell Electron/positron Storage Ring CESR, the
measurement of the coupling between the horizontal and
vertical beam motions has led to the ability to locate the
position of a coupler and to calculate its strength. Once the
identity of a coupler is known, steps can be taken to remove
it or to nullify its effect. This coupling analysis can also be
used to calibrate correction skew quadrupoles.

1 INTRODUCTION

In a storage ring, the presence of couplers, which couple
the horizontal and vertical motions of a beam, can lead
to an increase in the vertical beam size with an attendant
loss in luminosity[1]. In order to be able to keep the cou-
pling under control, a technique for measuring the coupling
has been developed at the Cornell Electron/positron Stor-
age Ring CESR[2]. This involves shaking the beam at the
betatron resonant frequencies and measuring the response
at the 100 or so detectors in the ring. In order to be able to
find unwanted sources of coupling, an analysis program has
been developed that can locate isolated coupling elements.
This analysis is presented below[3] and is analogous to the
technique of using orbit data to find isolated steering kicks.
As an added benefit, the analysis can also be used to cali-
brate the strength of skew quadrupoles.

2 ANALYSIS

2.1 How the Coupling is Defined

Any longitudinal oscillations are ignored and, following
Sagan and Rubin[4], the4× 4 1–turn transfer matrixT(s)
is written in normal mode form

T = VUV−1, (1)

where the normal mode matrixU is of the form

U =
(

A 0
0 B

)
, (2)

andV is of the form

V =
(

γI C
−C+ γI

)
, (3)

with “+” denoting the symplectic conjugate. SinceV is
required to be symplectic,γ andC are related by

γ2 + ||C|| = 1. (4)
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C(s) is a measure of the coupling; ifC = 0 thenV = 1
andT is decoupled. Instead of working withC, though, it
is convenient to work with the normalized matrixC given
by

C = Ga CG−1
b , (5)

whereGa andGb are normalization matrices for thea and
b normal modes respectively given by

G =


 1√

β
0

α√
β

√
β


 . (6)

At CESR,C is measured by observing the horizontal
and vertical oscillation of the beam at the detectors in the
ring while shaking the beam at a betatron resonance[2]. In
order to be able to extract the strength and location of cou-
pling elements from the data, it is necessary to know how
C changes across a coupler, and howC propagates in a
region where there are no coupling elements.

2.2 C Variation

If there are no couplers in a local region then the variation
of C is given by[4]

C(s) = λS(φ0 − φ+(s)) + κR(θ0 + φ−(s)), (7)

whereλ, φ0, κ, andθ0 are constants,R andS are rotation
and “anti-rotation” matrices of the form

R(θ) ≡
(

cos θ sin θ
− sin θ cos θ

)
, (8)

and

S(φ) ≡
(

cosφ sinφ
sinφ − cosφ

)
, (9)

with the sum and difference phase advances being

φ+ ≡ φa + φb, and
φ− ≡ φa − φb. (10)

To compute the change inC across a coupler, it is as-
sumed that the coupling is small so that terms second order
in C (or C) may be neglected. Thus, from Eq. (4), to first
order in the coupling

γ = 1. (11)

Using this, and Eqs. (1), (2), and (3), gives to first order

T =
(

A CB−AC
BC+ −C+A B

)
. (12)

Eq. (12) shows that the on–diagonal2 × 2 submatrices of
T are unaffected by the coupling. Thus, to first order, the
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eigenmode betas,βa andβb and the eigenmode phases,φa

andφb, are equal to what would be calculated if the cou-
pling is absent.

Couplers are modeled as thin skew quadrupoles. The
4 × 4 transfer matrixTcoup for a coupler is then

Tcoup =
(

1 −q
−q 1

)
, (13)

where

q =
(

0 0
δq 0

)
, (14)

with δq being the strength of the coupler. The 1–turn matrix
T0+, located at a point just after a coupler, is related to
the 1–turn matrixT0−, located at a point just before the
coupler, via

T0+ = Tcoup T0− T−1
coup. (15)

Multiplying out Eq. (15), and comparing with Eq. (12),
gives, to first order, and with the help of Eq. (5)

C0+ = C0− − q, (16)

where

q =
(

0 0
δq̄ 0

)
, (17)

with
δq̄ =

√
βaβb δq. (18)

2.3 Isolated Coupler Analysis

Given a coupler of interest at some points0, it is assumed
that the coupler is “isolated” so that it is the only coupler in
some local region. Since we have linearized the problem,
the general solution forC is the sum of a homogeneous
partCh plus an inhomogeneous partCi

C(s) = Ch(s) + Ci(s). (19)

The homogeneous part is the solution when there is no cou-
pler and is given by Eq. (7). The inhomogeneous part is the
solution with the coupler and with some boundary condi-
tion which we are free to choose. This boundary condition
will be chosen to beC(s) = 0 for s < s0. From Eqs. (7)
and (16), the inhomogeneous solution is

Ci(s) =




0 s < s0
δq̄
2

[
R

(
π
2 + φ−(s) − φ−(s0)

)
−

S
(

π
2 − φ+(s) + φ+(s0)

)]
s > s0

(20)
At CESR, the coupling measurement can measure the

C11, C12, andC22 components ofC. For various techni-
cal reasons, the errors in theC12 data are less than the er-
rors present in the measurement of the other components.
Therefore, the following analysis will consider only the

C12 component. Extending the analysis to the other com-
ponents is a trivial matter. From Eq. (7), the general solu-
tion for C12 can be written as

C12(s) =




γa sinφ−(s) + ζa cosφ−(s) +
λa sinφ+(s) + ρa cosφ+(s) s < s0

γb sinφ−(s) + ζb cosφ−(s) +
λb sinφ+(s) + ρb cosφ+(s) s > s0

(21)
The procedure for locating a coupler is as follows: Given
a putative coupler location, two regions are chosen. One
region, labeled “A”, is chosen to be just before the coupler.
The other region, labeled “B”, is chosen to be just after the
coupler (See the example at the end of the paper). Since
the betatron phase is, to first order, independent of the cou-
pling, the phase is taken to be equal to the phase in the
design lattice. With this, the sine and cosine functions in
Eq. (21) may be evaluated and then a least squares fit can
be used to determineγa, ζa, λa, andρa using the data from
the A region. Similarly,γb, ζb, λb, andρb are obtained
from a least squares fit using the data from the B region.
The inhomogeneous part of the solution is now obtained
from Eq. (21) by subtracting out the homogeneous part to
give

Ci,12 =

{ 0 s < s0

γba sinφ−(s) + ζba cosφ−(s) +
λba sinφ+(s) + ρba cosφ+(s) s > s0

(22)
with

γba = γb − γa, ζba = ζb − ζa,

λba = λb − λa, ρba = ρb − ρa. (23)

The phase at the coupler is found by comparing Eq. (20)
with Eq. (22)

tanφ+(s0) =
λba

ρba
, and

tanφ−(s0) =
γba

ζba
. (24)

There are multiple solutions to Eqs. (24) spacedπ apart.
However, valid solutions must have the correspondingφa

andφb (from Eq. (10)) corresponding to a location some-
where between the A and B regions.

The magnitude of the coupler is given by comparing
Eq. (20) to (22)

δq̄

2
= −λba sinφ+(s0) − ρba cosφ+(s0), or

δq̄

2
= γba sinφ−(s0) + ζba cosφ−(s0). (25)

Changes in amplitudes for theR andS components ofC12

may be defined by

A2
s,ba ≡ λ2

ba + ρ2
ba, A2

r,ba ≡ γ2
ba + ζ2

ba. (26)

Using this, Eqs. (25) may be put in a more transparent form

|δq̄| = 2As,ba = 2Ar,ba. (27)

The disadvantage of Eqs. (27), as opposed to Eqs. (25), is
that the sign ofδq̄ is lost.
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2.4 Error analysis

Even with a good fit to the data, the analysis can be off if
there is more than one coupler between the A and B re-
gions. From Eqs. (27), if there is only one coupler, then
As,ba = Ar,ba. A figure of meritχBA can thus be defined
by

χBA ≡ |As,ba − Ar,ba|
As,ba + Ar,ba

. (28)

The condition for a good fit with only one coupler is then

χBA � 1. (29)

3 EXAMPLE

The coupling analysis presented above can be used for find-
ing unwanted sources of coupling, and for calibrating skew
quadrupole magnets. Figure 1 shows how coupling data is
analyzed. In CESR, there are approximately 100 detectors
numbered from 0 to 99. TheC12 data shown in figure 1a
is the difference between two coupling measurements ob-
tained while varying a skew quadrupole placed between de-
tectors 48 and 49. The A region was chosen to be between
detectors 20 and 48 and the B region was chosen to be be-
tween detectors 50 and 80. Figure 1b shows theC12 data
with the fit to the A region subtracted off. There is a good fit
to the data as evidenced by the fact that the plot is near zero
within the A region. The general location of the coupler can
be located by eye by noting where, just to the right of the A
region, the data becomes significantly nonzero. Figure 1c
shows the data with the B region fit subtracted off. Again,
there is a good fit to the data. Table 1 shows the values
of the fitted parameters. From these values, and Eqs. (10),
(24) and (25), it is found that there is a single valid solution
given byφa = 31.86, φb = 29.70, andδq̄ = 0.14 with
χBA = 0.09. This verifies the location of the coupler and
gives the magnitude of the kick.

In the above example, the A and B regions could be cho-
sen a priori since the location of the coupler was known
before hand. When the location is not initially known, the
regions can be chosen through trial and error just by look-
ing at the plotted results until a good fit is obtained. If the
space between the A and B regions is too wide, Eqs. (24)
will have multiple solutions. However, since the solutions
are spaced apart in phase (and hence are some distance
apart), it is normally a simple matter to be able to select
the correct solution.

Region λ ρ γ ζ
A -0.008 0.114 -0.195 -0.186
B 0.057 0.093 -0.128 -0.231

B − A 0.065 -0.021 0.067 -0.045

Table 1: Fitted parametersλ, ρ, γ, andζ.
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Figure 1: Coupling data. The A and B fit regions are in-
dicated by the boxes. a) Data obtained by varying a skew
quadrupole. b) The data with the A region fit subtracted
off. c) The data with the B region fit subtracted off.
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